Company Spec Sheet: KIS Oceaneering

Zack Liddiard, Michael Hanano, Isabelle Tayo, Nikolette Argyris, & Logan Graham (L to R) with ROV Voyager

KIS Oceaneering:

Kealakehe Intermediate School

74-5062 Onipa'a St., Kailua-Kona, Suite G-1, HI 96740 USA

Distance traveled to MATE Int'l ROV Competition: 7,625 Km from Kona, HI to Orlando

K.I.S. Oceaneering Corporation Positions:

CEO and Head of R & D Engineer: *Nikolette Argyris*CFO & Systems Engineer: *Zack Liddiard*Government & Regulatory Affairs: *Talen Heinicke*Media Outreach Engineer: *Isabelle Tayo*Testing & Operations Engineer: *Logan Graham*Design Integration Engineer: *Michael Hanano*(14 years, 8th grade) returning member
(14 years, 8th grade) new member
(11 years, 6th grade) new member
(12 years, 6th grade) new member
(12 years, 6th grade) new member

History at Competitions: KIS Oceaneering/Kealakehe Intermediate has competed at Hawaii's BIRR competition since 2006 & at MATE's Int'l in 2007, 2008, 2009 & 2010. This will be our 5th Int'l competition.

ROV Voyager Vehicle Specs

Total Cost: \$4749.64 less \$4284.00 in grants, donated & reused items = \$515.64 new costs.

KIS Oceaneering is donating R & D and free tech support to MATE for the 2012 Voyager prototype

Primary Construction Materials: PVC: (poly vinyl chloride)

Dimensions: 59 cm long, 41 cm wide and 26 cm high Total Weight: 10.0 kilograms

Safety Features: 4 custom motor safety housings prevent entanglement & injury.

A 25 amp fuse & 2 heavy-duty banana plugs wired into a tether safety harness plug that connects to a 12 V battery. A current limiter reduces DC to 20 amps for added safety. Five 3-amp camera fuses are wired into the tether's electrical safety harness.

Special Features: designed to carry out 2012 MATE Missions:

High Speed Propulsion: 4 Johnson1250 GPH motors spin at a rate of 4732 LPH with custom designed, angled, brass propellers for maximum thrust. 1 Johnson 500 GPH motor that spins at a rate of 1,890 LPH with a two blade plastic propeller is used for lateral movement. **Advanced Sensor System:**

2 high-resolution, wide-angle cameras provide clear topside views of deep sea shipwrecks, detailed real-time monitoring of wreck structure, and the surrounding benthic environment. *Voyager's* advanced sonar, and marine compass provide accurate readings to navigate deep water missions.

Payload Tools: Multi-Purpose Claw: collects and transplants coral **Ferrous Tester:** determines if debris pile content is metal or non-metal.

Lift Bag Cradle: transports lift bag to fallen mast. **Fuel Oil Collector:** collects precise volumes of fuel oil.

Metric Line: provides secondary measurements to verify sonar **Marine Compass:** assists in navigation for wreck surveys

Furuno Sonar Sounder: measures distance & aides navigation for ship-wreck surveys